Range Transformations on a Banach Function Algebra. IV
نویسندگان
چکیده
منابع مشابه
Range Transformations on a Banach Function Algebra
We study the range transformations 0p(/fD, Reß) and Op(/fD, B) for Banach function algebras A and B. As a special instance, the harmonicity of functions in Op(/fD, Re A) for a nontrivial function algebra A is established and is compared with previous investigations of Op( An, A) and Op((Re/l);, (Re/1)) for an interval /. In §2 we present some results on Op(AD, B) and use them to show that funct...
متن کاملExponential Function on Complex Banach Algebra
The papers [23], [24], [4], [5], [2], [20], [21], [9], [1], [22], [13], [15], [16], [12], [10], [11], [17], [14], [25], [3], [7], [6], [19], and [8] provide the notation and terminology for this paper. For simplicity, we adopt the following convention: X denotes a complex Banach algebra, w, z, z1, z2 denote elements of X, k, l, m, n denote natural numbers, s1, s2, s3, s, s ′ denote sequences of...
متن کاملThe Exponential Function on Banach Algebra
The notation and terminology used here are introduced in the following papers: [17], [19], [20], [3], [4], [2], [16], [5], [1], [18], [9], [11], [12], [8], [6], [7], [13], [10], [21], [14], and [15]. For simplicity, we use the following convention: X denotes a Banach algebra, p denotes a real number, w, z, z1, z2 denote elements of X, k, l, m, n denote natural numbers, s1, s2, s3, s, s ′ denote...
متن کاملOn the Banach Algebra
We give some properties of the Banach algebra of bounded operators (lp(α)) for 1≤ p≤∞, where lp(α)= (1/α)−1∗lp . Then we deal with the continued fractions and give some properties of the operator ∆h for h > 0 or integer greater than or equal to one mapping lp(α) into itself for p ≥ 1 real. These results extend, among other things, those concerning the Banach algebra Sα and some results on the c...
متن کاملThe Series on Banach Algebra
Let X be a non empty normed structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed right complementa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1992
ISSN: 0002-9939
DOI: 10.2307/2159307